Nominal-Model-Based Sliding-Mode Control for Traveling-Wave Ultrasonic Motor

Author:

Liang Jing,Jing Kai,Dong Yan,Lin Xiaping,Wang Yuqing

Abstract

Traveling-wave ultrasonic motors (TWUSMs) have strong nonlinearity and uncertainty, which are sensitive to the environment, disturbances, and load changes. Thus, precision control of TWUSMs is hard to achieve with traditional methods for complex driving mechanisms. A nominal-model-based sliding-mode control strategy with strong robustness is proposed to achieve accurate speed control of TWUSMs. Firstly, a second-order nominal model of the speed difference and output torque was deduced to construct a nonlinear sliding-mode surface; then, a nonlinear sliding-mode controller was designed with the collaborative regulation of frequency and the amplitude of two-phase control voltages. The global asymptotic stability of the controller was proved under bounded disturbances and parameter uncertainty. Finally, the effectiveness and accurate control were testified to and verified by the simulations and experiments, which showed good robustness and a disturbance rejection of the strategy for TWUSMs, with strong nonlinearity and uncertainty.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3