Performance Analysis of a Travelling-Wave Ultrasonic Motor under Impact Load

Author:

Huang Jiahan,Sun Dong

Abstract

With the increased application of ultrasonic motors, it is necessary to put forward higher demand for the adaptability to environment. Impact, as a type of extreme environment, is widespread in weapon systems, machinery and aerospace. However, there are few reports about the influence of impact on an ultrasonic motor. This article aimed to study the reasons for the performance degradation and failure mechanism of an ultrasonic motor in a shock environment. First, a finite element model is established to observe the dynamic response of ultrasonic motor in a shock environment. Meanwhile, the reasons of the performance degradation in the motor are discussed. An impact experiment is carried out to test the influence of impact on an ultrasonic motor, including the influence on the mechanical characteristic of an ultrasonic motor and the vibration characteristic of a stator. In addition, the protection effect of rubber on an ultrasonic motor in a shock environment is verified via an experimental method. This article reveals the failure mechanism of ultrasonic motors in a shock environment and provides a basis for the improvement of the anti-impact property of ultrasonic motors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A cross-level vibration prediction of USM stator under electron radiation;International Journal of Mechanical Sciences;2024-09

2. Electromechanical coupling dynamics for a novel non-resonant harmonic piezoelectric motor;Applied Mathematical Modelling;2024-02

3. A novel traveling wave rotary ultrasonic motor with piezoelectric backup function;Journal of Intelligent Material Systems and Structures;2023-07-20

4. Design and experiment of a large displacement linear piezoelectric actuator;International Journal of Applied Electromagnetics and Mechanics;2023-06-05

5. Design and Research of Ultrasonic Motor Drive Based on LCLC Resonance Matching;Lecture Notes in Electrical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3