Observed Mesoscale Hydroclimate Variability of North America’s Allegheny Mountains at 40.2° N

Author:

Kutta EvanORCID,Hubbart JasonORCID

Abstract

Spatial hydroclimatic variability of Eastern North America’s Allegheny Mountain System (AMS) is commonly oversimplified to elevation differences and the rain-shadow effect. Descriptive and higher order statistical properties of hourly meteorological observations (1948–2017) from seven airports were analyzed to better understand AMS climatic complexity. Airports were located along a longitudinal transect (40.2 °N) and observation infrastructure was positioned to minimize climatic gradients associated with insolation, slope, and aspect. Results indicated average ambient temperature was well correlated with airport elevation (R2 = 0.97). However, elevation was relatively poorly correlated to dew point temperature (R2 = 0.80) and vapor pressure deficit (R2 = 0.61) heterogeneity. Skewness and kurtosis of ambient and dew point temperatures were negative at all airports indicating hourly values below the median were more common and extreme values were less common than a normal distribution implies. Westerly winds accounted for 54.5% of observations indicating prevailing winds misrepresented nearly half of AMS weather phenomena. The sum of maximum hourly precipitation rates was maximized in Philadelphia, PA implying a convective precipitation maximum near the border of Piedmont and Coastal Plain provinces. Results further indicate the AMS represents a barrier to omnidirectional moisture advection suggesting physiographic provinces are characterized by distinct evapotranspiration and precipitation regimes. The current work draws attention to observed mesoscale hydroclimatic heterogeneity of the AMS region and identifies mechanisms influencing local to regional water quantity and quality issues that are relevant to many locations globally.

Funder

National Science Foundation

U.S. Department of Agriculture

West Virginia Agricultural and Forestry

Publisher

MDPI AG

Subject

Atmospheric Science

Reference103 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3