Abstract
In this study, polycrystalline lead magnesium niobate–lead titanate (PMN–PT) was explored as an alternative piezoelectric material, with a higher power density for energy harvesting (EH), and comprehensively compared to the widely used polycrystalline lead zirconate titanate (PZT). First, the size distribution and piezoelectric properties of PZT and PMN–PT raw powders and ceramics were compared. Thereafter, both materials were deposited on stainless-steel substrates as 10 μm thick films using the aerosol deposition method. The films were processed as {3–1}-mode cantilever-type EH devices using microelectromechanical systems. The films with different annealing temperatures were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and dielectric behavior measurements. Furthermore, the mechanical and electrical properties of PMN–PT- and PZT-based devices were measured and compared. The PMN–PT-based devices showed a higher Young’s modulus and lower damping ratio. Owing to their higher figure of merit and lower piezoelectric voltage constant, they showed a higher power and lower voltage than the PZT-based devices. Finally, when poly-PMN–PT material was the active layer, the output power was enhanced by 26% at the 0.5 g acceleration level. Thus, these devices exhibited promising properties, meeting the high current and low voltage requirements in integrated circuit designs.
Funder
Ministry of Science and Technology
Javna Agencija za Raziskovalno Dejavnost RS
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献