Abstract
In data centers, efficient cooling systems are required to both keep the energy consumption as low as possible and to fulfill the temperature requirements. The aim of this work is to numerically investigate the effects of using partial aisle containment between the server racks for hard and raised floor configurations. The computational fluid dynamics (CFD) software ANSYS CFX was used together with the Reynolds stress turbulence model to perform the simulations. Velocity measurements in a server room were used for validation. Boundary conditions and the load of each rack were also retrieved from the experimental facility, implying an uneven load between the racks. A combination of the performance metrics Rack Cooling Index (RCI), Return Temperature Index (RTI) and Capture Index (CI) were used to evaluate the performance of the cooling systems for two supply flow rates at a 100% and 50% of operating condition. Based on the combination of performance metrics, the airflow management was improved in the raised floor configurations. With the supply flow rate set to operating conditions, the RCI was 100% for both raised floor and hard floor setups. The top- or side-cover fully prevented recirculation for the raised floor configuration, while it reduced the recirculation for the hard floor configuration. However, the RTI was low, close to 40% in the hard floor case, indicating poor energy efficiency. With the supply flow rate decreasing with 50%, the RTI increased to above 80%. Recirculation of hot air was indicated for all the containments when the supply rate was 50%, but the values of RCI still indicated an acceptable performance of the cooling system.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献