About Gas Barrier Performance and Recyclability of Waterborne Coatings on Paperboard

Author:

Bakker Sterre,Kloos JoeyORCID,Metselaar Gerald A.,Esteves A. Catarina C.,Schenning Albert P. H. J.ORCID

Abstract

For preserving food packed in environmentally friendly and recyclable paperboard packages, it is important to have sufficient gas barrier performance of the paperboard container. Paperboard has poor intrinsic barrier properties and to overcome this deficiency, so a barrier coating is needed that does not hinder the recycling of the paperboard substrate. However, the gas barrier properties and the recyclability of such coatings have been rarely studied. Here, both the gas barrier performance and the removal of an alkali-soluble resin (ASR)-stabilized waterborne barrier coatings from paperboard are investigated. For barriers for gases, such as nitrogen, carbon dioxide, and oxygen, defect-free coatings are needed which is achieved by applying three coating layers. The oxygen transmission rate (OTR) of the three-layered coating on paperboard was 920 cm3/(m2∙day). For water vapor barriers, two coating layers already show a strong improvement, as water follows a different penetration mechanism than the other tested gases. The water vapor transmission rate WVTR of double coated paperboard was 240 g/(m2∙day). Preliminary results show that the coating is removed by immersion of the coated paperboard in an aqueous alkaline solution at room temperature. This causes de-protonation of the carboxylic acids of the ASR and subsequent re-dispersion of the coating in water. Removing double-layer coatings from the paperboard is more challenging, possibly due to the coating/coating interface between the two coating layers and enhanced adhesion between coating and paperboard.

Funder

Advanced Research Center for Chemical Building Blocks

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference53 articles.

1. Oxygen Absorbers in Food Preservation: A Review;Cichello;J. Food Sci. Technol.,2015

2. Natural Antioxidants-Based Edible Active Food Packaging: An Overview of Current Advancements;Rambabu;Food Biosci.,2021

3. Antiplasticization Effect of Water in Amorphous Foods. A Review;Pittia;Food Chem.,2008

4. Embleni, A. (2013). Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG), Woodhead Publishing Limited.

5. Trends and Challenges in the Development of Bio-Based Barrier Coating Materials for Paper/Cardboard Food Packaging; a Review;Mujtaba;Sci. Total Environ.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3