A Practical Approach for Data Gathering for Polymer Cure Simulations

Author:

Heinze Søren,Echtermeyer Andreas

Abstract

Producing precision parts requires good control of the production parameters. When casting thermoset polymers an understanding of the curing process, with its heat release and associated temperature changes, is important. This paper describes how the cure of a polymer of unknown detailed chemical composition in a large part can be predicted and how the necessary material properties required for the predictions can be obtained. The approach given is a relatively simple method that a part manufacturer can perform. It will not characterize chemical reactions in detail, but it gives sufficient accuracy to describe the process. The procedures will be explained for an example of casting a large block of a filled two-component thermoset polyurethane. The prediction of the degree of cure, the associated heat and temperature increase during the curing of a polymer was successfully done using a standard finite element program with the input parameters reaction energy, the Arrhenius pre-factor and the kinetic function, which describes the chemical reaction. The three parameters could be obtained with standard Differential Scanning Calorimetry (DSC) equipment. The data were analyzed with the model-free isoconversional method combined with the compensation effect. The same set of parameters allowed the prediction of experimental cure behavior over two orders of magnitude of time and at a curing temperature range from room temperature up to 420 K.

Funder

Norges Forskningsråd

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3