eTPM: A Trusted Cloud Platform Enclave TPM Scheme Based on Intel SGX Technology

Author:

Sun Haonan,He Rongyu,Zhang YongORCID,Wang Ruiyun,Ip Wai Hung,Yung Kai Leung

Abstract

Today cloud computing is widely used in various industries. While benefiting from the services provided by the cloud, users are also faced with some security issues, such as information leakage and data tampering. Utilizing trusted computing technology to enhance the security mechanism, defined as trusted cloud, has become a hot research topic in cloud security. Currently, virtual TPM (vTPM) is commonly used in a trusted cloud to protect the integrity of the cloud environment. However, the existing vTPM scheme lacks protections of vTPM itself at a runtime environment. This paper proposed a novel scheme, which designed a new trusted cloud platform security component, ‘enclave TPM (eTPM)’ to protect cloud and employed Intel SGX to enhance the security of eTPM. The eTPM is a software component that emulates TPM functions which build trust and security in cloud and runs in ‘enclave’, an isolation memory zone introduced by SGX. eTPM can ensure its security at runtime, and protect the integrity of Virtual Machines (VM) according to user-specific policies. Finally, a prototype for the eTPM scheme was implemented, and experiment manifested its effectiveness, security, and availability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blockchain based secret key management for trusted platform module standard in reconfigurable platform;Concurrency and Computation: Practice and Experience;2024-07-12

2. Cloud Digital Forensics: Beyond Tools, Techniques, and Challenges;Sensors;2024-01-10

3. Remote attestation of confidential VMs using ephemeral vTPMs;Annual Computer Security Applications Conference;2023-12-04

4. A comprehensive survey of cryptography key management systems;Journal of Information Security and Applications;2023-11

5. iTPM: Exploring PUF-based Keyless TPM for Security-by-Design of Smart Electronics;2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI);2023-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3