Abstract
An analogy is found between the streamline function corresponding to Stokes flows in rectangular cavities and the thermodynamics of phase transitions and critical points. In a rectangular cavity flow, with no-slip boundary conditions at the walls, the corners are fixed points. The corners defined by a stationary and a moving wall, are found to be analogous to a thermodynamic first-order transition point. In contrast, the corners defined by two stationary walls correspond to thermodynamic critical points. Here, flow structures, also known as Moffatt eddies, form and act as stagnation regions where mixing is impeded. A third stationary point occurs in the middle region of the channel and it is analogous to a high temperature thermodynamic fixed point. The numerical results of the fluid flow modeling are correlated with analytical work in the proximity of the fixed points.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fragmentation in creeping flows: Percolation model;AIP Conference Proceedings;2024
2. Fractal geometry of mixing;INTERNATIONAL CONFERENCE ON HUMANS AND TECHNOLOGY: A HOLISTIC AND SYMBIOTIC APPROACH TO SUSTAINABLE DEVELOPMENT: ICHT 2022;2023