Viscous and resistive eddies near a sharp corner

Author:

Moffatt H. K.

Abstract

Some simple similarity solutions are presented for the flow of a viscous fluid near a sharp corner between two planes on which a variety of boundary conditions may be imposed. The general flow near a corner between plane boundaries at rest is then considered, and it is shown that when either or both of the boundaries is a rigid wall and when the angle between the planes is less than a certain critical angle, any flow sufficiently near the corner must consist of a sequence of eddies of decreasing size and rapidly decreasing intensity. The ratios of dimensions and intensities of successive eddies are determined for the full range of angles for which the eddies exist. The limiting case of zero angle corresponds to the flow at some distance from a two-dimensional disturbance in a fluid between parallel boundaries. The general flow near a corner between two plane free surfaces is also determined; eddies do not appear in this case. The asymptotic flow at a large distance from a corner due to an arbitrary disturbance near the corner is mathematically similar to the above, and has comparable properties. When the fluid is electrically conducting, similarity solutions may be obtained when the only applied magnetic field is that due to a line current along the intersection of the two planes; it is shown that the effect of such a current is to widen the range of corner angles for which eddies must appear.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference6 articles.

1. Rayleigh, Lord 1920 Sci. Pap. 6,18.

2. Dean, W. R. & Montagnon, P. E. 1949 Proc. Camb. Phil. Soc. 45,389.

3. Taylor, G. I. 1960 Aeronautics and Astronautics , p.12, ed. Hoff & Vincenti ,Pergamon Press.

4. Jeffery, G. B. 1915 Phil. Mag. 29,455.

5. Moffatt, H. K. 1964 Arch. Mech. Stosowanej (in the Press).

Cited by 1339 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3