Crack-Bridging Property Evaluation of Synthetic Polymerized Rubber Gel (SPRG) through Yield Stress Parameter Identification

Author:

Lee Jong-Yong,Seo Hyun-Jae,Oh Kyu-Hwan,Bo Jiang,Oh Sang-KeunORCID

Abstract

Yield stress parameter derivation was conducted by stress-strain curve analysis on four types of grout injection leakage repair materials (GILRM); acrylic, epoxy, urethane and SPRG grouts. Comparative stress-strain curve analysis results showed that while the yield stress point was clearly distinguishable, the strain ratio of SPRG reached up to 664% (13 mm) before material cohesive failure. A secondary experimental result comprised of three different common component ratios of SPRG was conducted to derive and propose an averaged yield stress curve graph, and the results of the yield stress point (180% strain ratio) were set as the basis for repeated stress-strain curve analysis of SPRGs of up to 15 mm displacement conditions. Results showed that SPRG yield stress point remained constant despite repeated cohesive failure, and the modulus of toughness was calculated to be on average 53.1, 180.7, and 271.4 N/mm2, respectively, for the SPRG types. The experimental results of this study demonstrated that it is possible to determine the property limits of conventional GILRM (acrylic, epoxy and urethane grout injection materials) based on yield stress. The study concludes with a proposal on potential application of GILRM toughness by finite element analysis method whereby strain of the material can be derived by hydrostatic pressure. Comparative analysis showed that the toughness of SPRG materials tested in this study are all able to withstand hydrostatic pressure range common to underground structures (0.2 N/mm2). It is expected that the evaluation method and model proposed in this study will be beneficial in assessing other GILRM materials based on their toughness values.

Funder

Ministry of Land, Infrastructure, and Transport

Publisher

MDPI AG

Subject

General Materials Science

Reference27 articles.

1. Maintenance for leakage due to cracking in concrete structures—Guidelines for repair of water-leakage cracks in concrete structures;Oh;J. Korea Concr. Inst.,2011

2. Advanced technology of waterproofing;Chang;J. Arch. Inst. Korea,2005

3. A study on the construction detail of waterproofing in underground of apartments;Oh;J. Korea Inst. Build. Constr.,2017

4. ISO TR 16475: 2011 Guidelines for the Repair of Water-leakage Cracks in Concrete Structures,2011

5. ISO TS 16774: 2011 Parts 1–6, Guidelines for the Repair of Water-leakage Cracks in Concrete Structures,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3