Hydraulic Resistance Analysis Based on Cohesive Strength and Toughness of Synthetic Polymerized Rubber Gel Used as Water-Leakage Repair Material for Concrete Structures

Author:

Seo Hyunjae,Oh Kyuhwan,Lee Jongyong,Bo Jiang,Kim ByoungilORCID,Oh SangkeunORCID

Abstract

As construction in urban centers increases internationally, many concrete infrastructures are being built at 100 m or more underground, and the influence of groundwater on these facilities is also increasing. Accordingly, the importance of waterproofing and leak-proofing technology for securing long-term durability and safety of underground concrete facilities has been greatly emphasized. The most important required performance of such leak repair technology is to withstand structural behavior and groundwater pressure well. Currently, as a leak repair material for underground concrete facilities, a synthetic rubber-based polymer rubber gel with adhesive flexibility is used internationally. However, quantitative data on how deep the material can perform underground are lacking. In general, the water pressure resistance evaluation of leak repair materials only checks whether it withstands the water pressure of 30 m (0.3 MPa) underground. Therefore, in this study, the toughness of the synthetic rubber polymerized gel (SPRG) leak repair material was calculated using three factors: viscosity, cohesive strength (adhesion strength), and elongation, and an analysis method that can be replaced with water pressure resistance was proposed. In addition, in the correlation between toughness and underground water pressure, it was possible to find out the thickness of the leak repair material used by the underground depth. As a result, it was possible to know the required thickness of the leak repair material according to the depth of the structure to be built underground.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Maintenance for Leakage due to Cracking in Concrete Structures-Guidelines for Repair of Water-Leakage Cracks in Concrete Structures;Oh;J. Korea Concr. Inst.,2011

2. Advanced Technology of Waterproofing;Chang;J. Arch. Inst. Korea,2005

3. A Study on the Construction Detail of Waterproofing in Underground of Apartments;Oh;J. Korea Inst. Build. Constr.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3