Nanocomposite-Based Electrode Structures for EEG Signal Acquisition

Author:

Vajravelu Ashok,Abdul Jamil Muhammad Mahadi Bin,Abd Wahab Mohd Helmy Bin,Wan Zaki Wan Suhaimizan Bin,Vinod Vibin MammenORCID,Ramasamy Palanisamy Karthik,Nageswara Rao Gousineyah

Abstract

Objective: To fabricate a lightweight, breathable, comfortable, and able to contour to the curvilinear body shape, electrodes built on a flexible substrate are a significant growth in wearable health monitoring. This research aims to create a GNP/FE electrode-based EEG signal acquisition system that is both efficient and inexpensive. Methodology: Three distinct electrode concentrations were developed for EEG signal acquisition, three distinct electrode concentrations (1.5:1.5, 2:1, and 3:0). The high strength-to-weight ratio to form the tribofilm in the fabrication of the electrode will provide good efficiency. The EEG signal is first subjected to a wavelet transform, which serves as a preliminary analysis. The use of biopotential signals in wearable systems as biofeedback or control commands is expected to substantially impact point-of-care health monitoring systems, rehabilitation devices, human–computer/machine interfaces (HCI/HMI), and brain–computer interfaces (BCIs). The graphene oxide (GO), glycerol (GL), and polyvinyl alcohol (PVA) GO/GL/PVA plastic electrodes were measured and compared to that of a commercially available electrode using the biopic equipment. The GO/GL/PVA plastic electrode was able to detect EEG signals satisfactorily after being used for two months, demonstrating good conductivity and lower noise than the commercial electrode. The GO/GL/PVA nanocomposite mixture was put into the electrode mold as soon as it was ready and then rapidly chilled. Results: The quality of an acquired EEG signal could be measured in several ways including by its error percentage, correlation coefficient, and signal-to-noise ratio (SNR). The fabricated electrode yield detection ranged from 0.81 kPa−1 % to 34.90 kPa−1%. The performance was estimated up to the response of 54 ms. Linear heating at the rate of 40 °C per minute was implemented on the sample ranges from 0 °C to 240 °C. During the sample electrode testing in EEG signal analysis, it obtained low impedance with a good quality of signal acquisition when compared to a conventional wet type of electrode. Conclusions: A large database was frequently built from all of the simulated signals in MATLAB code. Through the experiment, all of the required data were collected, checked against all other signals, and proven that they were accurate representations of the intended database. Evidence suggests that graphene nanoplatelets (GNP) hematite (FE2O3) polyvinylidene fluoride (PVDF) GNP/FE2O3@PVDF electrodes with a 3:0 concentration yielded the best outcomes.

Funder

Research Management Centre (RMC) of Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Malayisa

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pin-Shaped Ag/AgCl Fabric Electrode Coated With Hydrogel for EEG Recording in Hairy Areas;IEEE Sensors Journal;2024-08-15

2. Disorder Detection on EEG Signals and Brain Images Using a Hybrid Approach of Combining the Convolutional Neural Network and Artificial Neural Network (CANN);2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

3. Content modification using compressive sensing and double random phase encoding;AIP Conference Proceedings;2024

4. EEG – Based Bipolar Disorder Deduction Using Machine Learning;2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI);2023-10-19

5. Post-Traumatic Stress Disorder (PTSD) Analysis using Machine Learning Techniques;2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI);2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3