The Recent Progress of Two-Dimensional Transition Metal Dichalcogenides and Their Phase Transition

Author:

Chen HuiORCID,Zhang JiweiORCID,Kan Dongxiao,He JiabeiORCID,Song Mengshan,Pang Jianhua,Wei Songrui,Chen KaiyunORCID

Abstract

Graphene is attracting much attention in condensed matter physics and material science in the two-dimensional(2D) system due to its special structure, and mechanical and electronic properties. However, the lack of electronic bandgap and uncontrollable phase structure greatly limit its application in semiconductors, such as power conversion devices, optoelectronic devices, transistors, etc. During the past few decades, 2D transition metal dichalcogenides (TMDs) with much more phase structures have attracted intensive research interest in fundamental studies and practical applications for energy storage, as catalysts, and in piezoelectricity, energy harvesting, electronics, optoelectronic, and spintronics. The controllable phase transition also provides another degree of freedom to pave the way for more novel devices. In this review, we introduce the abundant phase structures of 2D-TMDs, including 2H, 1T, 1T’ and charge density waves, and highlight the corresponding attractive properties and applications of each phase. In addition, all the possible methods to trigger the phase transition in TMDs are systematically introduced, including strain engineering, electron doping, alloying, thermal, electric field, and chemical absorption. Finally, the outlook of future opportunities in TMD phase transitions and the corresponding challenges, including both the synthesis and applications, are also addressed.

Funder

National Natural Science Foundation of China

Research Startup Fund of the Northwest Institute for Nonferrous Metal Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3