Synthesis and X-ray Structure Combined with Hirshfeld and AIM Studies on a New Trinuclear Zn(II)-Azido Complex with s-Triazine Pincer Ligand

Author:

Dahlous Kholood A.,Soliman Saied M.,El-Faham Ayman,Massoud Raghdaa A.

Abstract

The trinuclear [Zn3(PMT)2(Cl4)(N3)2] complex of the N-pincer ligand, 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (PMT), was obtained by self-assembly of the polydentate ligand (PMT) with ZnCl2 in the presence of azide ion as an auxiliary bridging ligand. The X-ray structure analysis revealed a monoclinic crystal system and centrosymmetric space group C2/c. There are two crystallographically independent Zn(II) sites where the Zn1 and Zn2 are tetra- and penta-coordinated with ZnN2Cl2 and ZnN4Cl coordination environments, respectively. The distortion τ4 and τ5 parameters for the Zn1 and Zn2 sites are 0.93 and 0.52, respectively. Hence, the Zn(1)N2Cl2 has a distorted tetrahedral configuration, while the Zn(2)N4Cl coordination sphere is intermediate between the square pyramidal and trigonal bipyramidal configurations. In this complex, the PMT is a tridentate N-chelate, while the chloride and azide anions are terminal and μ(1,1) bridged ligands, respectively. The %H…H, N…H, Cl…H, and C…H are 40.8, 17.2, 16.0, and 10.1%, respectively, based on Hirshfeld analysis. The charges at the Zn1 (+0.996 e) and Zn2 (+1.067 e) sites are calculated to be less than the official charge of the isolated Zn(II) ion. The μ(1,1) bridged azide has two asymmetric N–N bonds with clear covalent characters. In contrast, the Zn–N and Zn–Cl bonds have predominant closed-shell characters.

Funder

King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3