A Novel Na(I) Coordination Complex with s-Triazine Pincer Ligand: Synthesis, X-ray Structure, Hirshfeld Analysis, and Antimicrobial Activity

Author:

Yousri Amal1ORCID,El-Faham Ayman1ORCID,Haukka Matti2ORCID,Ayoup Mohammed Salah1,Ismail Magda M. F.3,Menofy Nagwan G. El4ORCID,Soliman Saied M.1,Öhrström Lars5,Barakat Assem6ORCID,Abu-Youssef Morsy A. M.1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321, Egypt

2. Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland

3. Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt

4. Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt

5. Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

6. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

The pincer ligand 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (bpmt) was used to synthesize the novel [Na(bpmt)2][AuCl4] complex through the self-assembly method. In this complex, the Na(I) ion is hexa-coordinated with two tridentate N-pincer ligands (bpmt). The two bpmt ligand units are meridionally coordinated to Na(I) via one short Na-N(s-triazine) and two slightly longer Na-N(pyrazole) bonds, resulting in a distorted octahedral geometry around the Na(I) ion. In the coordinated bpmt ligand, the s-triazine core is not found to be coplanar with the two pyrazole moieties. Additionally, the two bpmt units are strongly twisted from one another by 64.94°. Based on Hirshfeld investigations, the H···H (53.4%) interactions have a significant role in controlling the supramolecular arrangement of the [Na(bpmt)2][AuCl4] complex. In addition, the Cl···H (12.2%), C···H (11.5%), N···H (9.3%), and O···H (4.9%) interactions are significant. Antimicrobial investigations revealed that the [Na(bpmt)2][AuCl4] complex has promising antibacterial and antifungal activities. The [Na(bpmt)2][AuCl4] complex showed enhanced antibacterial activity for the majority of the studied gram-positive and gram-negative bacteria compared to the free bpmt (MIC = 62.5–125 µg/mL vs. MIC = 62.5–500 µg/mL, respectively) and Amoxicillin (MIC > 500 µg/mL) as a positive control. Additionally, the [Na(bpmt)2][AuCl4] complex had better antifungal efficacy (MIC = 125 µg/mL) against C. albicans compared to bpmt (MIC = 500 µg/mL).

Funder

King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3