Evaluation of the Piezoresistivity of a Thin Film of ZnO Doped with Fluorine and Deposited via the Ultrasonic Spray Pyrolysis Technique for Applications in Micro/Nano-Electromechanical Sensors

Author:

Petlacalco Ramírez Héctor Eduardo,Alcántara Iniesta Salvador,Soto Cruz Blanca Susana,Mejía Silva Jesús Israel

Abstract

In this study, thin films of zinc oxide doped with fluorine ZnO: F were deposited via ultrasonic spray pyrolysis (USP) with an atomic ratio of [F/Zn] in a starting solution of 15 at.% on borosilicate glass coverslips and SiO2/Si substrates. The structure, electrical resistivity, and thickness were obtained via X-ray diffraction, the four-point technique, and profilometry, respectively. A ZnO: F piezoresistor was modeled at the fixed end of the cantilever through lithography and chemical etching. A SiO2/Si cantilever structure was used to evaluate the piezoresistivity of a ZnO: F thin film, and temperature coefficient of resistance (TCR) measurements were performed in an electric furnace. The strain on the ZnO: F piezoresistor caused by the application of masses at the free end of the cantilever was determined using a theoretical equation, in addition to a simulation in the COMSOL Multiphysics 5.3a FEM (finite element method) software considering the dimensions and materials of the manufactured device. The ZnO: F thin films were hexagonal wurtzite (phase 002), with thicknesses in the range from 234 nm to 295 nm and with resistivities of the order of 10−2 Ω.cm. The ZnO: F thin-film piezoresistor showed a gauge factor (GF) of 12.7 and a TCR of −3.78 × 10−3 %/K up to 525 K, which are suitable properties for sensor development.

Funder

CONACYT doctoral scholarship

Institute of Semiconductor Devices program at CIDS BUAP

VIEP-BUAP

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3