Author:
Li Feng,Shen Tao,Wang Cong,Zhang Yupeng,Qi Junjie,Zhang Han
Abstract
AbstractThe development of two-dimensional (2D) semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness, unique structure, excellent optoelectronic properties and novel physics. The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance. The strain-engineered one-dimensional materials have been well investigated, while there is a long way to go for 2D semiconductors. In this review, starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain, following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors, such as Janus 2D and 2D-Xene structures. Moreover, recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized. Furthermore, the applications of strain-engineered 2D semiconductors in sensors, photodetectors and nanogenerators are also highlighted. At last, we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献