Deep Learning Classification of Crystal Structures Utilizing Wyckoff Positions

Author:

Ali Hakami Nada,Hosni Mahmoud Hanan AhmedORCID

Abstract

In materials science, crystal lattice structures are the primary metrics used to measure the structure–property paradigm of a crystal structure. Crystal compounds are understood by the number of various atomic chemical settings, which are associated with Wyckoff sites. In crystallography, a Wyckoff site is a point of conjugate symmetry. Therefore, features associated with the various atomic settings in a crystal can be fed into the input layers of deep learning models. Methods to analyze crystals using Wyckoff sites can help to predict crystal structures. Hence, the main contribution of our article is the classification of crystal classes using Wyckoff sites. The presented model classifies crystals using diffraction images and a deep learning method. The model extracts feature groups including crystal Wyckoff features and crystal geometry. In this article, we present a deep learning model to predict the stage of the crystal structure–property. The lattice parameters and the structure–property commotion values are used as inputs into the deep learning model for training. The structure–property value of a crystal with a lattice width value of one-half millimeter on average is used for learning. The model attains a considerable increase in speed and precision for the real structure–property prediction. The experimental results prove that our proposed model has a fast learning curve, and can have a key role in predicting the structure–property of compound structures.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3