Effects of Cr Concentration on the Structure and the Electrical and Optical Properties of Ti-Al-Cr-N Thin Films Prepared by Means of Reactive Co-Sputtering

Author:

Prieto-Novoa Gina,Vallejo FabioORCID,Piamba OscarORCID,Olaya Jhon,Pineda Yaneth

Abstract

Thin films of Ti-Al-Cr-N were deposited onto glass substrates by means of the reactive magnetron co-sputtering of pure Cr and TiAl alloy targets in an atmosphere of Ar and N2. This investigation was carried out by adjusting the Cr-target power in order to increase the Cr amount in the films. The crystal structure of the films was investigated via X-ray diffraction (XRD). The elemental composition of the coatings was determined using Auger electron spectroscopy (AES). The electrical resistivity was measured using the four-point probe method, and the optical properties were characterized via ultraviolet/visible (UV/Vis) spectroscopy. The experimental results showed that, with a Cr concentration between 0 at% and 11.6 at%, a transition between phases from a single-phase hexagonal wurtzite-type structure to a single-phase cubic NaCl-type structure took place. The addition of Cr increased the crystallite size and, with it, the roughness of the coatings. All of the coatings exhibited an ohmic behavior at room temperature, and their surface electrical resistivity decreased from 490.1 ± 43.4 Ωcm to 1.5 ± 0.1 Ωcm as the chromium concentration increased. The transmittance of the coatings decreased, and the optical band gap (Egap) went from 3.5 eV to 2.3 eV with the addition of Cr. These electrical and optical properties have not been previously reported for these films.

Funder

MINCIENCIAS

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3