Enhanced Thermoelectric Performance of ZnO-Based Thin Films via Interface Engineering

Author:

Zhou ZhifangORCID,Zheng YunpengORCID,Yang YueyangORCID,Zhang Wenyu,Zou Mingchu,Nan Ce-Wen,Lin Yuan-Hua

Abstract

Zinc oxide (ZnO) is a potential thermoelectric material with good chemical and thermal stability as well as an excellent Seebeck coefficient. However, the extremely low carrier concentration brings poor electrical transport properties. Although Gallium (Ga) doping could increase the carrier concentration of ZnO film, its thermoelectric performance is still limited due to the deteriorated Seebeck coefficient and enhanced thermal conductivity. Interface engineering is an effective strategy to decouple electron-phonon interaction for thermoelectric materials. Thus, in this work, GZO (Ga-doped ZnO)/NAZO (Ni, Al co-doped ZnO) multilayer films were designed to further improve the thermoelectric properties of GZO films. It was found that GZO/NAZO multilayer films possessed better electrical conductivity, which was attributed to the increased carrier concentration and Hall mobility. Meanwhile, benefiting from the energy filtering that occurred at GZO/NAZO interfaces, the density of states effective mass increased, resulting in comparable Seebeck coefficient values. Ultimately, an enhanced power factor value of 313 μW m−1 K−2 was achieved in the GZO/NAZO multilayer film, which is almost 46% larger than that of GZO film. This work provides a paradigm to optimize the thermoelectric performance of oxide films and other thermoelectric systems by multilayer structure design with coherent interfaces.

Funder

Basic Science Center Project of National Natural Science Foundation of China

National Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3