Melt-Pool Dynamics and Microstructure of Mg Alloy WE43 under Laser Powder Bed Fusion Additive Manufacturing Conditions

Author:

Soderlind Julie,Martin Aiden A.ORCID,Calta Nicholas P.ORCID,DePond Philip J.ORCID,Wang Jenny,Vrancken BeyORCID,Schäublin Robin E.ORCID,Basu Indranil,Thampy Vivek,Fong Anthony Y.,Kiss Andrew M.,Berry Joel M.,Perron Aurélien,Nelson Weker JohannaORCID,Stone Kevin H.,Tassone Christopher J.,Toney Michael F.,Van Buuren Anthony,Löffler Jörg F.ORCID,Risbud Subhash H.ORCID,Matthews Manyalibo J.

Abstract

Magnesium-based alloy WE43 is a state-of-the-art bioresorbable metallic implant material. There is a need for implants with both complex geometries to match the mechanical properties of bone and refined microstructure for controlled resorption. Additive manufacturing (AM) using laser powder bed fusion (LPBF) presents a viable fabrication method for implant applications, as it offers near-net-shape geometrical control, allows for geometry customization based on an individual patient, and fast cooling rates to achieve a refined microstructure. In this study, the laser–alloy interaction is investigated over a range of LPBF-relevant processing conditions to reveal melt-pool dynamics, pore formation, and the microstructure of laser-melted WE43. In situ X-ray imaging reveals distinct laser-induced vapor depression morphology regimes, with minimal pore formation at laser-scan speeds greater than 500 mm/s. Optical and electron microscopy of cross-sectioned laser tracks reveal three distinct microstructural regimes that can be controlled by adjusting laser-scan parameters: columnar, dendritic, and banded microstructures. These regimes are consistent with those predicted by the analytic solidification theory for conduction-mode welding, but not for keyhole-mode tracks. The results provide insight into the fundamental laser–material interactions of the WE43 alloy under AM-processing conditions and are critical for the successful implementation of LPBF-produced WE43 parts in biomedical applications.

Funder

Lawrence Livermore National Laboratory

Office of Energy Efficiency and Renewable Energy

National Nuclear Security Administration

Office of Basic Energy Sciences

University of California Lab Fees Research Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3