The Effect of Scanning Strategy on the Thermal Behavior and Residual Stress Distribution of Damping Alloys during Selective Laser Melting

Author:

Yan Zhiqiang12,Wu Kaiwen1ORCID,Xiao Zhongmin1,Hui Jizhuang2,Lv Jingxiang2ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

2. Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an 710064, China

Abstract

The manufacture of damping alloy parts with stable damping properties and high mechanical performances in the selective laser melting (SLM) process is influenced by temperature evolution and residual stress distribution. Choosing an appropriate scanning strategy, namely the specific trajectory along which the laser head scans powders within given area, is crucial, but clearly defined criteria for scanning strategy design are lacking. In this study, a three-dimensional finite element model (FEM) of the SLM process for manufacturing a WE43 alloy component was established and validated against the published experimental data. Eleven different scanning strategies were designed and simulated, considering variables such as scanning track length, direction, Out–In or In–Out strategy, start point, and interlayer variation. The results showed that scanning strategy, geometry, and layer number collectively affect temperature, melt pool, and stress outputs. For instance, starting scanning at a colder part of the powder layer could lead to a high peak temperature and low melt pool depth. A higher layer number generally results in lower cooling rate, a lower temperature gradient, a longer melt pool life, and larger melt pool dimensions. Changing the start point between scanning circulations helps mitigate detrimental residual stress. This work highlights the potential of analyzing various scanning strategy-related variables, which contributes to reducing trial-and-error tests and selecting optimal scanning strategies under different product quality requirements. This article can assist in the design of appropriate scanning strategies to prevent defects such as element loss due to evaporation, poor bonding, and deformation or cracking from high residual stress. Additionally, identifying stress concentration locations and understanding the effects of geometry and layer number on thermal and mechanical behaviors can assist in geometry design.

Funder

China Scholarship Council

Scientific Innovation Practice Project of Postgraduates of Chang’an University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3