Low Temperature Thermal Properties of Nanodiamond Ceramics

Author:

Szewczyk DariaORCID,Ramos Miguel A.

Abstract

The temperature dependence of thermal conductivity and specific heat for detonated nanodiamond ceramics is investigated on specially designed experimental setups, implementing the uniaxial stationary heat flow method and the thermal relaxation method, respectively. Additionally, complementary studies with a commercial setup (Physical Property Measurement System from Quantum Design operating either in Thermal Transport or Heat Capacity Option) were performed. Two types of samples are under consideration. Both ceramics were sintered at high pressures (6–7 GPa) for 11–25 s but at different sintering temperatures, namely 1000 °C and 1600 °C. The effect of changing the sintering conditions on thermal transport is examined. In thermal conductivity κ(T), it provides an improvement up to a factor of 3 of heat flow at room temperature. The temperature dependence of κ(T) exhibits a typical polycrystalline character due to hindered thermal transport stemming from the microstructure of ceramic material but with values around 1–2 W/mK. At the lowest temperatures, the thermal conductivity is very low and increases only slightly faster than linear with temperature, proving the significant contribution of the scattering due to multiple grain boundaries. The specific heat data did not show a substantial difference between detonated nanodiamond ceramics obtained at different temperatures unlike for κ(T) results. For both samples, an unexpected upturn at the lowest temperatures is observed—most likely reminiscent of a low-T Schottky anomaly. A linear contribution to the specific heat is also present, with a value one order of magnitude higher than in canonical glasses. The determined Debye temperature is 482 (±6) K. The results are supported by phonon mean free path calculations.

Funder

Bekker Programme of the Polish National Agency of Academic Exchange

Ministerio de Ciencia e Innovación of Spain

Autonomous Community of Madrid

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference45 articles.

1. Dolmatov, V. (2016). Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes and Nanodiamonds, CRC Press.

2. Vul’, A., Dideikin, A., Aleksenskii, A., and Baidakova, M.V. (2014). Nanodiamond, RSC Nanoscience and Nanotechnology.

3. Diamonds in detonation soot;Greiner;Nature,1988

4. Gruen, D.M., Shenderova, O.A., and Vul’, A. (2009). Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Springer.

5. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications;Zhang;Compos. Part B Eng.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3