Two innovative derivation methods of the Nernst equation without any additional assumptions

Author:

Su Shanhe1ORCID,Xia Shihao1ORCID,Liang Tao1ORCID,Chen Jincan1ORCID

Affiliation:

1. Department of Physics, Xiamen University, Xiamen 361005, China

Abstract

It is found that without any additional assumptions, Nernst’s equation can be re-deduced from the experimental data obtained from the thermodynamic systems at ultra-low temperatures, which is different from the derivation processes in textbooks and literature, and consequently, the physical content included by Nernst’s equation should not be referred to as Nernst’s postulate or Nernst’s theorem. It should be renamed as the Nernst statement. This discovery will play an important role in improving the theoretical framework of thermodynamics. It can effectively prevent some artificial assumptions into the third law of thermodynamics, making it a true reflection of the objective world. It solves the awkward problem caused by using a thermodynamic theorem as the core contents of a thermodynamic law for over one hundred years.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Reference46 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3