Assessing the Susceptibility of Landslides in the Tuoding Section of the Upper Reaches of the Jinsha River, China, Using a Combination of Information Quantity Modeling and GIS

Author:

Ruan Yunkai1ORCID,Huo Ranran1,Chen Jinzi1,Liu Weicheng1,Zhou Xin2,Wang Tanhua3,Hou Mingzhi4,Huang Wei1

Affiliation:

1. College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China

3. Fujian Communications Planning and Design Institute Co., Ltd., Fuzhou 350004, China

4. China Northeast Architectural Design & Research Institute Co., Ltd., Shenyang 110006, China

Abstract

Combined with visible light remote sensing technology and InSAR technology, this study employed the fundamental principles of the frequency ratio model, information content model, and analytic hierarchy process to assess the susceptibility of the study area. Nine susceptibility assessment factors such as elevation, slope, aspect, water system, vegetation coverage, geological structure, stratum lithology, rainfall, and human activities were selected, and the factor correlation degree was calculated by using the relative area density value of the landslide. The frequency ratio model and information content model were selected to carry out landslide susceptibility zoning, and the accuracy of the two models was verified by the ROC curve and density method. The results indicate that the information content model performed relatively well. Therefore, the information model, combined with the analytic hierarchy process and fuzzy superposition method using the landslide point density map, was chosen to evaluate landslide susceptibility. The study area was divided into five levels of landslide hazard, ranging from low to high, using the natural discontinuity point method. The results show that the area of each hazard zoning is 197.48, 455.72, 408.21, 152.66, and 16.22 km2 from low to high, and the proportion of landslides in the corresponding area is 0.17%, 1.60%, 3.88%, 8.41%, and 16.65%, respectively. It can be seen that with the increase in the hazard level, the proportion of landslides also increases significantly, which verifies the accuracy of the hazard results. Additionally, four representative landslides in the study area were selected for analysis to understand their characteristics and underlying mechanisms. The results revealed that these landslides were notably influenced by the density of the Jinsha River and the surrounding roads. The susceptibility assessment outcomes for geological disasters align well with the current situation of landslide occurrences in the Tuoding river section, demonstrating high accuracy. This study provides a scientific foundation for effective prevention and control measures against local landslide disasters.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province, China

Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3