Abstract
Automatic emotion detection is a very attractive field of research that can help build more natural human–machine interaction systems. However, several issues arise when real scenarios are considered, such as the tendency toward neutrality, which makes it difficult to obtain balanced datasets, or the lack of standards for the annotation of emotional categories. Moreover, the intrinsic subjectivity of emotional information increases the difficulty of obtaining valuable data to train machine learning-based algorithms. In this work, two different real scenarios were tackled: human–human interactions in TV debates and human–machine interactions with a virtual agent. For comparison purposes, an analysis of the emotional information was conducted in both. Thus, a profiling of the speakers associated with each task was carried out. Furthermore, different classification experiments show that deep learning approaches can be useful for detecting speakers’ emotional information, mainly for arousal, valence, and dominance levels, reaching a 0.7F1-score.
Funder
European Commission
Spanish National Research Council
University of the Basque Country
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献