Classification of Respiratory States Using Spectrogram with Convolutional Neural Network

Author:

Park CheolhyeongORCID,Lee DeokwooORCID

Abstract

This paper proposes an approach to the classification of respiration states based on a neural network model by visualizing respiratory signals using a spectrogram. The analysis and processing of human biosignals are still considered some of the most crucial and fundamental research areas in both signal processing and medical applications. Recently, learning-based algorithms in signal and image processing for medical applications have shown significant improvement from both quantitative and qualitative perspectives. Human respiration is still considered an important factor for diagnosis, and it plays a key role in preventing fatal diseases in practice. This paper chiefly deals with a contactless-based approach for the acquisition of respiration data using an ultra-wideband (UWB) radar sensor because it is simple and easy for use in an experimental setup and shows high accuracy in distance estimation. This paper proposes the classification of respiratory states by using a feature visualization scheme, a spectrogram, and a neural network model. The proposed method shows competitive and promising results in the classification of respiratory states. The experimental results also show that the method provides better accuracy (precision: 0.86 and specificity: 0.90) than conventional methods that use expensive equipment for respiration measurement.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. Deep Learning Bio–Signal Analysis from a Wearable Device;Skubisz;Comput. Inf. Syst. Ind. Manag.,2021

2. Wearable Multiple Modality Bio-Signal Recording and Processing on Chip: A Review

3. INFLAMMATORY BIOMARKERS AND OBSTRUCTIVE SLEEP APNEA IN RESISTANT HYPERTENSION

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3