A Tool to Combine Expert Knowledge and Machine Learning for Defect Detection and Root Cause Analysis in a Hot Strip Mill

Author:

Latham SamuelORCID,Giannetti Cinzia

Abstract

AbstractWidth-related defects are a common occurrence in the Hot Strip Mill process which can lead to extra processing, concessions, or scrapping. The detection and Root Cause Analysis of these defects is a largely manual process and is vulnerable to several negative factors including human error, late feedback, and knock-on effects in successive steel strip products. Automated tools which utilize Artificial Intelligence and Machine Learning for defect detection and Root Cause Analysis in hot rolling have not yet been adopted outside of surface defect detection and roller force optimization. In this paper, we propose an automated tool for the detection and Root Cause Analysis of width-related defects in the hot rolling process which utilizes a combination of expert knowledge and several Machine Learning models. Through this, we aim to increase the scope, and encourage further development, of Machine Learning applications within the Hot Strip Mill process. Both classical algorithms and Computer Vision methods were used for the Machine Learning component of the tool, namely, classification trees and pre-trained convolutional neural networks. The tool is trained and validated using data from an existing hot rolling mill and thus the challenges of collecting and processing real-world legacy data are highlighted and discussed. The Machine Learning models used are shown to perform optimally by validation performance metrics. The tool is found to be suitable for the specified purpose and would be further improved with more training data.

Funder

European Social Fund

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Networks and Communications,Computer Graphics and Computer-Aided Design,Computational Theory and Mathematics,Artificial Intelligence,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Machine Learning Insights at the Hot Strip Rolling Mill, Tata Steel, Port Talbot;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3