Cordyceps cicadae NTTU 868 Mycelia Fermented with Deep Ocean Water Minerals Prevents D-Galactose-Induced Memory Deficits by Inhibiting Oxidative Inflammatory Factors and Aging-Related Risk Factors

Author:

Chang Ching-Yu12,Yang Pei-Xin2,Yu Tsai-Luen1,Lee Chun-Lin2ORCID

Affiliation:

1. Marine Industry and Engineer Research Center, National Academy of Marine Research, Kaohsiung 806614, Taiwan

2. Department of Life Science, National Taitung University, 369, Section 2, University Rd., Taitung 95092, Taiwan

Abstract

Cordyceps cicadae, a medicinal fungus that is abundant in bioactive compounds such as N6-(2-hydroxyethyl)-adenosine (HEA) and polysaccharides, possesses remarkable anti-inflammatory, antioxidant, and nerve damage recovery properties. Deep ocean water (DOW) contains minerals that can be absorbed and transformed into organic forms by fungi fermentation. Recent studies have shown that culturing C. cicadae in DOW can enhance its therapeutic benefits by increasing the levels of bioactive compounds and minerals’ bioavailibility. In this study, we investigated the effects of DOW-cultured C. cicadae (DCC) on brain damage and memory impairment induced by D-galactose in rats. Our results indicate that DCC and its metabolite HEA can improve memory ability and exhibit potent antioxidant activity and free radical scavenging in D-galactose-induced aging rats (p < 0.05). Additionally, DCC can mitigate the expression of inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), thereby preventing brain aging. Furthermore, DCC showed a significant decrease in the expression of the aging-related proteins glial fibrillary acidic protein (GFAP) and presenilin 1 (PS1). By reducing brain oxidation and aging-related factors, DOW-cultured C. cicadae demonstrate enhanced anti-inflammatory, antioxidant, and neuroprotective effects, making it a promising therapeutic agent for preventing and treating age-related brain damage and cognitive impairment.

Funder

Ministry of Economic Affairs, Taiwan

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3