A Grid Feature-Point Selection Method for Large-Scale Street View Image Retrieval Based on Deep Local Features

Author:

Chu Tianyou,Chen Yumin,Huang Liheng,Xu Zhiqiang,Tan Huangyuan

Abstract

Street view image retrieval aims to estimate the image locations by querying the nearest neighbor images with the same scene from a large-scale reference dataset. Query images usually have no location information and are represented by features to search for similar results. The deep local features (DELF) method shows great performance in the landmark retrieval task, but the method extracts many features so that the feature file is too large to load into memory when training the features index. The memory size is limited, and removing the part of features simply causes a great retrieval precision loss. Therefore, this paper proposes a grid feature-point selection method (GFS) to reduce the number of feature points in each image and minimize the precision loss. Convolutional Neural Networks (CNNs) are constructed to extract dense features, and an attention module is embedded into the network to score features. GFS divides the image into a grid and selects features with local region high scores. Product quantization and an inverted index are used to index the image features to improve retrieval efficiency. The retrieval performance of the method is tested on a large-scale Hong Kong street view dataset, and the results show that the GFS reduces feature points by 32.27–77.09% compared with the raw feature. In addition, GFS has a 5.27–23.59% higher precision than other methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A semantic features-enhanced dispensation network for retrieving remote sensing images;International Journal of Machine Learning and Cybernetics;2024-06-13

2. A new geographic positioning method based on horizon image retrieval;Multimedia Tools and Applications;2024-04-23

3. 基于通道注意力和特征切片的图像快速匹配算法;Acta Optica Sinica;2023

4. Adaptive Multi-Proxy for Remote Sensing Image Retrieval;Remote Sensing;2022-11-07

5. Object detection and tracking aided SLAM in image sequences for dynamic environment;2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP);2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3