Poly(ε-Caprolactone)/Brewers’ Spent Grain Composites—The Impact of Filler Treatment on the Mechanical Performance

Author:

Hejna AleksanderORCID

Abstract

Waste lignocellulose materials, such as brewers’ spent grain, can be considered very promising sources of fillers for the manufacturing of natural fiber composites. Nevertheless, due to the chemical structure differences between polymer matrices and brewers’ spent grain, filler treatment should be included. The presented work aimed to investigate the impact of fillers’ reactive extrusion on the chemical structure and the poly(ε-caprolactone)/brewers’ spent grain composites’ mechanical performance. The chemical structure was analyzed by Fourier-transform infrared spectroscopy, while the mechanical performance of composites was assessed by static tensile tests and dynamic mechanical analysis. Depending on the filler pretreatment, composites with different mechanical properties were obtained. Nevertheless, the increase in pretreatment temperature resulted in the increased interface surface area of filler, which enhanced composites’ toughness. As a result, composites were able to withstand a higher amount of stress before failure. The mechanical tests also indicated a drop in the adhesion factor, pointing to enhanced interfacial interactions for higher pretreatment temperatures. The presented work showed that reactive extrusion could be considered an auspicious method for lignocellulose filler modification, which could be tailored to obtain composites with desired properties.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3