Abstract
Composite materials are widely used in various manufacturing fields from aeronautic and aerospace industries to the automotive industry. This is due to their outstanding mechanical properties with respect to their light weight. However, some studies showed that the major flaws of these materials are located at the fiber/matrix interface. Therefore, enhancing matrix adhesion properties could significantly improve the overall material characteristics. This study aims to analyze the effect of graphene particles on the adhesion properties of carbon fiber-reinforced polymer (CFRP) through interlaminar shear strength (ILSS) and flexural testing. Seven modified epoxy resins were prepared with different graphene contents. The CFRP laminates were next manufactured using a method that guarantees a repeatable and consistent fiber volume fraction with a low porosity level. Short beam shear and flexural tests were performed to compare the effect of graphene on the mechanical properties of the different laminates. It was found that 0.25 wt.% of graphene filler enhanced the flexural strength by 5%, whilst the higher concentrations (2 and 3 wt.%) decreased the flexural strength by about 7%. Regarding the ILSS, samples with low concentrations (0.25 and 0.5 wt.%) demonstrated a decent increase. Meanwhile, 3 wt.% slightly decreases the ILSS.
Subject
Engineering (miscellaneous),Ceramics and Composites
Reference38 articles.
1. Application of carbon fiber reinforced plastics in automotive industry: A review;Othman;J. Mech. Manuf.,2018
2. Study on Carbon Fiber Composite Materials in Sports Equipment
3. Commercial Aircraft Composite Technology;Breuer,2016
4. Mechanics of Aeronautical Composite Materials;Bouvet,2017
5. Shigley’s Mechanical Engineering Design;Budynas,2011
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献