Mechanical properties of carbon fiber reinforced with carbon nanotubes and graphene filled epoxy composites: experimental and numerical investigations

Author:

Prasanthi P PhaniORCID,Kumar M S R Niranjan,Chowdary M SomaiahORCID,Madhav V V VenuORCID,Saxena Kuldeep KORCID,Mohammed Kahtan A,Khan Muhammad IjazORCID,Upadhyay Gaurav,Eldin Sayed M

Abstract

Abstract The mechanical properties of carbon fiber-reinforced epoxy composites were identified by adding carbon-based nano-reinforcements, such as multi-wall carbon nanotubes (CNTs) and graphene platelets (GP), into the epoxy matrix by conducting suitable experiments. The main focus of this study is to compare the tensile modulus, tensile strength, flexural modulus, flexural strength, and thermal conductivity of carbon fiber-reinforced epoxy composites with nanoparticle reinforcement. The results revealed that adding CNTs and GP nanoparticles improved the mechanical properties compared to a pure carbon fiber-reinforced plastic composite. However, compared to CNTs, the GP’s addition has increased the mechanical properties of the CFRP composite. In addition, scanning electron microscopy (SEM) images were presented to explore the microstructural characterization of carbon fiber-reinforced nanoparticle-reinforced composites. Further, using numerical studies, the transverse modulus, major and minor Poisson’s ratio of the carbon fibre reinforced with CNT and GP particle reinforcement were estimated. The current study is applied to the efficient design of nanoparticle reinforced carbon fibre reinforced composites.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference50 articles.

1. Application of carbon fiber reinforced plastics in automotive industry: a review;Othman;Journal of Mechanical Manufacturing (J-MFac),2018

2. Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers—A short review;Forintos;Composites Part B: Engineering,2019

3. Impact damage resistance of CFRP with nanoclay-filled epoxy matrix;Iqbal;Compos. Sci. Technol.,2009

4. Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes;Wang;Compos. Sci. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3