Life Cycle Costing and Eco-Efficiency Assessment of Fuel Production by Coprocessing Biomass in Crude Oil Refineries

Author:

Cruz Pedro L.ORCID,Iribarren DiegoORCID,Dufour Javier

Abstract

Biobased liquid fuels are becoming an attractive alternative to replace, totally or partially, fossil ones in the medium term, mainly in aviation and long-distance transportation. In this regard, coprocessing biomass-derived feedstocks in conventional oil refineries might facilitate the transition from the current fossil-based transport to a biobased one. This article addresses the economic and environmental feasibility of such a coprocessing strategy. The biomass-based feedstocks considered include bio-oil and char from the fast pyrolysis of lignocellulosic biomass, which are coprocessed in fluid catalytic cracking (FCC), hydrocracking, and/or cogasification units. The assessment was based on the standardized concept of eco-efficiency, which relates the environmental and economic performances of a system following a life-cycle approach. Data from a complete simulation of the refinery process, from raw materials to products, were used to perform a life cycle costing and eco-efficiency assessment of alternative configurations of the coprocessing strategy, which were benchmarked against the conventional fossil refinery system. Among other relevant results, the eco-efficiency related to the system’s carbon footprint was found to improve when considering coprocessing in the hydrocracking unit, while coprocessing in FCC generally worsens the eco-efficiency score. Overall, it is concluded that coprocessing biomass-based feedstock in conventional crude oil refineries could be an eco-efficient energy solution, which requires a careful choice of the units where biofeedstock is fed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference68 articles.

1. BP Energy Outlook 2018,2018

2. A portfolio of power-trains for Europe: A fact-based analysis. The role of Battery Electric Vehicles, Plug-in Hybrids and Fuel Cell Electric Vehiclehttps://www.fch.europa.eu/sites/default/files/Power_trains_for_Europe_0.pdf

3. World Energy Outlook 2016. Executive Summary,2016

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3