Global Maximum Power Point Tracking of Solar Photovoltaic Strings under Partial Shading Conditions Using Cat Swarm Optimization Technique

Author:

Nagadurga T.,Narasimham P. V. R. L.,Vakula V. S.

Abstract

The power versus voltage curves of solar photovoltaic panels form several peaks under fractional (partial) shading conditions. Traditional maximum output power tracking (MPPT) techniques fail to achieve global peak power at the output terminals. The proposed Cat Swarm Optimization (CSO) method intends to apply MPPT techniques to extract the global maxima from the shaded photovoltaic systems. CSO is a robust and powerful metaheuristic swarm-based optimization technique that has received very positive feedback since its emergence. It has been used to solve a variety of optimization issues, and several variations have been developed. The CSO-based maximum power tracking technique can successfully tackle two major issues of the PV system during shading conditions, including random oscillations caused by conventional tracking techniques and power loss. The proposed techniques have been extensively used in comparison to conventional algorithms like the Perturb and the Observe (P and O) technique. The main objective is to achieve a tracking speed for extracting the Maximum Power Point (MPP) from the solar Photovoltaic (PV) system under fractional shading conditions by using CSO. Modeling of the solar photovoltaic array in the MATLAB/Simulink platform comprises a photovoltaic module, a switching converter (Boost Converter), and the load. The PSO and CSO techniques are applied to the PV module under different weather conditions. The PSO algorithm is compared to the CSO algorithm according to simulation results, revealing that the CSO algorithm can provide better accuracy and a faster tracking speed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3