Bankruptcy Prediction Models Based on Value Measures

Author:

Jaki AndrzejORCID,Ćwięk Wojciech

Abstract

In the existing studies devoted to predicting bankruptcy, the authors of such models only used book measures. Considering the fact that the evolution of corporate measure efficiency (in addition to book measures) brought into existence and exposed the importance of cash measures, market measures, and measures based on the economic profit concept, it is justified to carry out research into the possibility of using these measures as variables within the discriminant function. The studied dataset was divided into a training set and a testing set based on two variants of the sample division. The assessment of the statistical significance of the built discriminant functions as well as the diagnostic variables was conducted using the STATISTICA package. The research was conducted separately for each variant. In the first step, a total of 30 discriminant models were created. This enabled us to select 20 diagnostic variables that were considered within the two models that were characterised by the highest predictive abilities—one for each variant. The discriminant function that was estimated for the first variant was based on the use of eight diagnostic variables, and 13 diagnostic variables were used in the function that was estimated for the second variant. The conducted analysis has proven that shareholder value measures are a useful tool that can be applied for the needs of corporate risk management in the area of the assessment of a firm’s bankruptcy risk. Using two variants of the division of the research sample into the training and testing sets, it turned out that the division affects the predictive efficiency of the discriminant functions. At the same time, the obtained findings tend to claim that the presence of the value measures from all four of the studied groups in the output set of the diagnostic variables is necessary for possibly building the most efficient tool for the early warning signs of bankruptcy risk.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3