Plant-Based Substrates for the Production of Iron Bionanoparticles (Fe-BNPs) and Application in PCB Degradation with Bacterial Strains

Author:

Tlčíková Marcela1ORCID,Horváthová Hana12ORCID,Dercová Katarína3,Majčinová Michaela3,Hurbanová Mariana3,Turanská Katarína3,Jurkovič Ľubomír1

Affiliation:

1. Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia

2. The Centre of Environmental Services, Ltd., Kutlíkova 17, 852 50 Bratislava, Slovakia

3. Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia

Abstract

Removing polychlorinated biphenyls (PCBs) from the environment is an important process for the protection of biota. This work examines three different approaches to the degradation of such contaminants. The first involves the use of iron bionanoparticles (Fe-BNPs) prepared through green synthesis from selected plant matrices. The second approach entails the use of the bacteria Stenotrophomonas maltophilia (SM) and Ochrobactrum anthropi (OA) isolated from a PCB-contaminated area, Strážsky canal, located in the Slovak republic, which receives efflux of canal from Chemko Strážske plant, a former producer of PCB mixtures. The third approach combines these two methods, employing a sequential hybrid two-step application of Fe-BNPs from the plant matrix followed by the application of bacterial strains. Fe-BNPs are intended to be an eco-friendly alternative to synthetic nanoscale zero-valent iron (nZVI), which is commonly used in many environmental applications. This work also addresses the optimization parameters for using nZVI in PCB degradation, including the pH of the reaction, oxygen requirements, and dosage of nZVI. Pure standards of polyphenols (gallic acid, GA) and flavonoids (quercetin, Q) were tested to produce Fe-BNPs using green synthesis at different concentrations (0.1, 0.3, 0.5, 0.8, and 1 g.L−1) and were subsequently applied to the PCB degradation experiments. This step monitored the minimum content of bioactive substances needed for the synthesis of Fe-BNPs and their degradation effects. Experimental analysis indicated that among the selected approaches, sequential nanobiodegradation appears to be the most effective for PCB degradation, specifically the combination of Fe-BNPs from sage and bacteria SM (75% degradation of PCBs) and Fe-BNPs from GA (0.3 g.L−1) with bacteria OA (92% degradation of PCBs).

Funder

Comenius University

European Union under the Horizon Europe project

Slovak Research and Development Agency

Scientific Grant Agency of the Ministry of Education, Science, and Sport of the Slovak Republic

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3