A Radiotherapy Dose Map-Guided Deep Learning Method for Predicting Pathological Complete Response in Esophageal Cancer Patients after Neoadjuvant Chemoradiotherapy Followed by Surgery

Author:

Yap Wing-Keen1ORCID,Hsiao Ing-Tsung2,Yap Wing-Lake3,Tsai Tsung-You4,Lu Yi-An4,Yang Chan-Keng5,Peng Meng-Ting5,Su En-Lin6,Cheng Shih-Chun7ORCID

Affiliation:

1. Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Memorial Hospital—Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 333, Taiwan

2. Department of Medical Imaging and Radiological Sciences, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan

3. Department of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan

4. Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital—Linkou Medical Center, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 333, Taiwan

5. Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou Branch, Chang Gung University College of Medicine, Taoyuan 333, Taiwan

6. Department of School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan

7. Taiwan AI Labs, Taipei 103, Taiwan

Abstract

Esophageal cancer is a deadly disease, and neoadjuvant chemoradiotherapy can improve patient survival, particularly for patients achieving a pathological complete response (ypCR). However, existing imaging methods struggle to accurately predict ypCR. This study explores computer-aided detection methods, considering both imaging data and radiotherapy dose variations to enhance prediction accuracy. It involved patients with node-positive esophageal squamous cell carcinoma undergoing neoadjuvant chemoradiotherapy and surgery, with data collected from 2014 to 2017, randomly split into five subsets for 5-fold cross-validation. The algorithm DCRNet, an advanced version of OCRNet, integrates RT dose distribution into dose contextual representations (DCR), combining dose and pixel representation with ten soft regions. Among the 80 enrolled patients (mean age 55.68 years, primarily male, with stage III disease and middle-part lesions), the ypCR rate was 28.75%, showing no significant demographic or disease differences between the ypCR and non-ypCR groups. Among the three summarization methods, the maximum value across the CTV method produced the best results with an AUC of 0.928. The HRNetV2p model with DCR performed the best among the four backbone models tested, with an AUC of 0.928 (95% CI, 0.884–0.972) based on 5-fold cross-validation, showing significant improvement compared to other models. This underscores DCR-equipped models’ superior AUC outcomes. The study highlights the potential of dose-guided deep learning in ypCR prediction, necessitating larger, multicenter studies to validate the results.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3