Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study

Author:

Ye Guanchao,Wu Guangyao,Qi Yu,Li Kuo,Wang Mingliang,Zhang Chunyang,Li Feng,Wee Leonard,Dekker Andre,Han Chu,Liu Zaiyi,Liao Yongde,Shi ZhenweiORCID

Abstract

ObjectivesAlthough neoadjuvant immunochemotherapy has been widely applied in non-small cell lung cancer (NSCLC), predicting treatment response remains a challenge. We used pretreatment multimodal CT to explore deep learning-based immunochemotherapy response image biomarkers.MethodsThis study retrospectively obtained non-contrast enhanced and contrast enhancedbubu CT scans of patients with NSCLC who underwent surgery after receiving neoadjuvant immunochemotherapy at multiple centers between August 2019 and February 2023. Deep learning features were extracted from both non-contrast enhanced and contrast enhanced CT scans to construct the predictive models (LUNAI-uCT model and LUNAI-eCT model), respectively. After the feature fusion of these two types of features, a fused model (LUNAI-fCT model) was constructed. The performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. SHapley Additive exPlanations analysis was used to quantify the impact of CT imaging features on model prediction. To gain insights into how our model makes predictions, we employed Gradient-weighted Class Activation Mapping to generate saliency heatmaps.ResultsThe training and validation datasets included 113 patients from Center A at the 8:2 ratio, and the test dataset included 112 patients (Center B n=73, Center C n=20, Center D n=19). In the test dataset, the LUNAI-uCT, LUNAI-eCT, and LUNAI-fCT models achieved AUCs of 0.762 (95% CI 0.654 to 0.791), 0.797 (95% CI 0.724 to 0.844), and 0.866 (95% CI 0.821 to 0.883), respectively.ConclusionsBy extracting deep learning features from contrast enhanced and non-contrast enhanced CT, we constructed the LUNAI-fCT model as an imaging biomarker, which can non-invasively predict pathological complete response in neoadjuvant immunochemotherapy for NSCLC.

Funder

National Key Research and Development Program

National Science Foundation for Young Scientists of China

Wuhan Science and Technology Bureau Knowledge Innovation Special Project

International Cooperation Project of Hubei Provincial Department of Science and Technology

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3