ADMET and Solubility Analysis of New 5-Nitroisatine-Based Inhibitors of CDK2 Enzymes

Author:

Czeleń Przemysław1ORCID,Jeliński Tomasz1ORCID,Skotnicka Agnieszka2ORCID,Szefler Beata1ORCID,Szupryczyński Kamil3

Affiliation:

1. Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-096 Bydgoszcz, Poland

2. Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland

3. Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jagiellońska 13, 85-067 Bydgoszcz, Poland

Abstract

The development of new substances with the ability to interact with a biological target is only the first stage in the process of the creation of new drugs. The 5-nitroisatin derivatives considered in this study are new inhibitors of cyclin-dependent kinase 2 (CDK2) intended for anticancer therapy. The research, carried out based on the ADMET (absorption, distribution, metabolism, excretion, toxicity) methods, allowed a basic assessment of the physicochemical parameters of the tested drugs to be made. The collected data clearly showed the good oral absorption, membrane permeability, and bioavailability of the tested substances. The analysis of the metabolite activity and toxicity of the tested drugs did not show any critical hazards in terms of the toxicity of the tested substances. The substances’ low solubility in water meant that extended studies tested compounds were required, which helped to select solvents with a high dissolving capacity of the examined substances, such as DMSO or NMP. The use of aqueous binary mixtures based on these two solvents allowed a relatively high solubility with significantly reduced toxicity and environmental index compared to pure solvents to be maintained, which is important in the context of the search for green solvents for pharmaceutical use.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference54 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3