A Robust Brain Tumor Detector Using BiLSTM and Mayfly Optimization and Multi-Level Thresholding

Author:

Mahum Rabbia1ORCID,Sharaf Mohamed2ORCID,Hassan Haseeb3,Liang Lixin3,Huang Bingding3ORCID

Affiliation:

1. Department of Computer Science, University of Engineering and Technology Taxila, Taxila 47050, Pakistan

2. Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

3. College of Big Data and Internet, Shenzhen Technology University (SZTU), Shenzhen 518118, China

Abstract

A brain tumor refers to an abnormal growth of cells in the brain that can be either benign or malignant. Oncologists typically use various methods such as blood or visual tests to detect brain tumors, but these approaches can be time-consuming, require additional human effort, and may not be effective in detecting small tumors. This work proposes an effective approach to brain tumor detection that combines segmentation and feature fusion. Segmentation is performed using the mayfly optimization algorithm with multilevel Kapur’s threshold technique to locate brain tumors in MRI scans. Key features are achieved from tumors employing Histogram of Oriented Gradients (HOG) and ResNet-V2, and a bidirectional long short-term memory (BiLSTM) network is used to classify tumors into three categories: pituitary, glioma, and meningioma. The suggested methodology is trained and tested on two datasets, Figshare and Harvard, achieving high accuracy, precision, recall, F1 score, and area under the curve (AUC). The results of a comparative analysis with existing DL and ML methods demonstrate that the proposed approach offers superior outcomes. This approach has the potential to improve brain tumor detection, particularly for small tumors, but further validation and testing are needed before clinical use.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference45 articles.

1. Díaz-Pernas, F.J., Martínez-Zarzuela, M., Antón-Rodríguez, M., and González-Ortega, D. (2021). A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare, 9.

2. Amanullah, M., Visumathi, J., Sammeta, N., and Ashok, M. (2022). AIP Conference Proceedings, AIP Publishing LLC.

3. Artificial intelligence and patentability: Review and discussions;Chatterjee;Int. J. Mod. Res.,2021

4. Brain tumour classification using two-tier classifier with adaptive segmentation technique;Anitha;IET Comput. Vis.,2016

5. Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm;Mohsen;Expert Syst. Appl.,2014

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3