Effects of the Co-Overexpression of the BCL and BDNF Genes on the Gamma-Aminobutyric Acid-Ergic Differentiation of Wharton’s-Jelly-Derived Mesenchymal Stem Cells

Author:

Borkowska Paulina1ORCID,Morys Julia1,Zielinska Aleksandra1,Kowalski Jan1

Affiliation:

1. Department of Medical Genetics, Medical University of Silesia, 41-200 Sosnowiec, Poland

Abstract

One of the problems with using MSCs (mesenchymal stem cells) to treat different neurodegenerative diseases of the central nervous system is their low ability to spontaneously differentiate into functional neurons. The aim of this study was to investigate how the co-overexpression of the BCL and BDNF genes affects the ability of genetically modified MSCs to differentiate into GABA-ergic neurons. A co-overexpression of two genes was performed, one of which, BCL, was supposed to increase the resistance of the cells to the toxic agents in the brain environment. The second one, BDNF, was supposed to direct the cells onto the neuronal differentiation pathway. As a result, the co-overexpression of both BCL2 + BDNF and BCLXL + BDNF caused an increase in the MAP2 gene expression level (a marker of the neuronal pathway) and the SYP gene that is associated with synaptogenesis. In both cases, approximately 18% of the genetically modified and then differentiated cells exhibited the presence of the GAD protein, which is characteristic of GABA-ergic neurons. Despite the presence of GAD, after both modifications, only the BCL2 and BDNF co-overexpression correlated with the ability of the modified cells to release gamma-aminobutyric acid (GABA) after depolarization. Our study identified a novel model of genetically engineered MSCs that can be used as a tool to deliver the antiapoptotic proteins (BCL) and neurotrophic factor (BDNF) directly into the brain microenvironment. Additionally, in the investigated model, the genetically modified MSCs could easily differentiate into functional GABA-ergic neurons and, moreover, due to the secreted BCL and BDNF, promote endogenous neuronal growth and encourage synaptic connections between neurons.

Funder

Medical University of Silesia, Katowice, Poland

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3