Epileptic Patient Activity Recognition System Using Extreme Learning Machine Method

Author:

Ayman Ummara1,Zia Muhammad Sultan2,Okon Ofonime Dominic3,Rehman Najam-ur4ORCID,Meraj Talha5ORCID,Ragab Adham E.6ORCID,Rauf Hafiz Tayyab7ORCID

Affiliation:

1. Department of Computer Science, The University of Lahore, Chenab Campus, Gujrat 50700, Pakistan

2. Department of Computer Science, The University of Chenab, Gujrat 50700, Pakistan

3. Department Of Electrical/Electronics & Computer Engineering, Faculty of Engineering, University of Uyo, Uyo 520103, Nigeria

4. Department of Human Resource Section, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan

5. Department of Computer Science, COMSATS University Islamabad—Wah Campus, Wah Cantt 47040, Pakistan

6. Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

7. Centre for Smart Systems, AI and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK

Abstract

The Human Activity Recognition (HAR) system is the hottest research area in clinical research. The HAR plays a vital role in learning about a patient’s abnormal activities; based upon this information, the patient’s psychological state can be estimated. An epileptic seizure is a neurological disorder of the human brain and affects millions of people worldwide. If epilepsy is diagnosed correctly and in an early stage, then up to 70% of people can be seizure-free. There is a need for intelligent automatic HAR systems that help clinicians diagnose neurological disorders accurately. In this research, we proposed a Deep Learning (DL) model that enables the detection of epileptic seizures in an automated way, addressing a need in clinical research. To recognize epileptic seizures from brain activities, EEG is a raw but good source of information. In previous studies, many techniques used raw data from EEG to help recognize epileptic patient activities; however, the applied method of extracting features required much intensive expertise from clinical aspects such as radiology and clinical methods. The image data are also used to diagnose epileptic seizures, but applying Machine Learning (ML) methods could address the overfitting problem. In this research, we mainly focused on classifying epilepsy through physical epileptic activities instead of feature engineering and performed the detection of epileptic seizures in three steps. In the first step, we used the open-source numerical dataset of epilepsy of Bonn university from the UCI Machine Learning repository. In the second step, data were fed to the proposed ELM model for training in different training and testing ratios with a little bit of rescaling because the dataset was already pre-processed, normalized, and restructured. In the third step, epileptic and non-epileptic activity was recognized, and in this step, EEG signal feature extraction was automatically performed by a DL model named ELM; features were selected by a Feature Selection (FS) algorithm based on ELM and the final classification was performed using the ELM classifier. In our presented research, seven different ML algorithms were applied for the binary classification of epileptic activities, including K-Nearest Neighbor (KNN), Naïve Bayes (NB), Logistic Regression (LR), Stochastic Gradient Boosting Classifier (SGDC), Gradient Boosting Classifier (GB), Decision Trees (DT), and three deep learning models named Extreme Learning Machine (ELM), Long Short-Term Memory (LSTM), and Artificial Neural Network (ANN). After deep analysis, it is observed that the best results were obtained by our proposed DL model, Extreme Learning Machine (ELM), with an accuracy of 100% accuracy and a 0.99 AUC. Such high performance has not attained in previous research. The proposed model’s performance was checked with other models in terms of performance parameters, namely confusion matrix, accuracy, precision, recall, F1-score, specificity, sensitivity, and the ROC curve.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3