Distributed Abnormal Activity Detection in Smart Environments

Author:

Wang Chengliang12ORCID,Zheng Qian1,Peng Yayun1,De Debraj3ORCID,Song Wen-Zhan3

Affiliation:

1. College of Computer Science, Chongqing University, Chongqing 400044, China

2. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

3. Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA

Abstract

The abnormal activity detection in smart environments has experienced increasing attention over years, due to its usefulness in pervasive applications. In order to meet the real-time needs and overcome the high costs and privacy issues, this paper proposes distributed abnormal activity detection approach ( DetectingAct), which employs the computing and storage resources of simple and ubiquitous sensor nodes, to detect abnormal activity in smart environments equipped with wireless sensor networks (WSN). In DetectingAct, activity is defined as the combination of trajectory and duration, and abnormal activity is defined as the activity which deviates greater enough from those normal activities. DetectingAct works as follows. Firstly, DetectingAct finds the normal activity patterns through duration-dependent frequent pattern mining algorithm (DFPMA), which adopts unsupervised learning instead of supervised learning. Secondly, the distributed knowledge storage mechanism (DKSM) is introduced to store the mined patterns in each node. Then, the current triggered sensor adopts distributed abnormal activity detection algorithm (DAADA), in which the clustering analysis plays a critical role, to compare the present activity with normal activity patterns, by calculating the similarity between them. The feasibility, real-time property, and accuracy of the DetectingAct algorithm are evaluated using both simulation and real experiments case studies.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3