DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy

Author:

Alshammari Abdulaziz1

Affiliation:

1. Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

Abstract

Brain metastases (BM) are the most severe consequence of malignancy in the brain, resulting in substantial illness and death. The most common primary tumors that progress to BM are lung, breast, and melanoma. Historically, BM patients had poor clinical outcomes, with limited treatment options including surgery, stereotactic radiation therapy (SRS), whole brain radiation therapy (WBRT), systemic therapy, and symptom control alone. Magnetic Resonance Imaging (MRI) is a valuable tool for detecting cerebral tumors, though it is not infallible, as cerebral matter is interchangeable. This study offers a novel method for categorizing differing brain tumors in this context. This research additionally presents a combination of optimization algorithms called the Hybrid Whale and Water Waves Optimization Algorithm (HybWWoA), which is used to identify features by reducing the size of recovered features. This algorithm combines whale optimization and water waves optimization. The categorization procedure is consequently carried out using a DenseNet algorithm. The suggested cancer categorization method is evaluated on a number of factors, including precision, specificity, and sensitivity. The final assessment findings showed that the suggested approach exceeded the authors’ expectations, with an F1-score of 97% and accuracy, precision, memory, and recollection of 92.1%, 98.5%, and 92.1%, respectively.

Funder

Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3