Deep Learning-Based Prediction of Alzheimer’s Disease Using Microarray Gene Expression Data

Author:

Abdelwahab Mahmoud M.12ORCID,Al-Karawi Khamis A.34,Semary Hatem E.15

Affiliation:

1. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia

2. Department of Basic Sciences, Higher Institute of Administrative Sciences, Belbeis 44621, Egypt

3. School of Science, Engineering and Environment, Salford University, Salford M5 4WT, UK

4. College of Veterinary Medicine, Diyala University, Baquba 32001, Iraq

5. Department of Statistics and Insurance, Faculty of Commerce, Zagazig University, Zagazig 44519, Egypt

Abstract

Alzheimer’s disease is a genetically complex disorder, and microarray technology provides valuable insights into it. However, the high dimensionality of microarray datasets and small sample sizes pose challenges. Gene selection techniques have emerged as a promising solution to this challenge, potentially revolutionizing AD diagnosis. The study aims to investigate deep learning techniques, specifically neural networks, in predicting Alzheimer’s disease using microarray gene expression data. The goal is to develop a reliable predictive model for early detection and diagnosis, potentially improving patient care and intervention strategies. This study employed gene selection techniques, including Singular Value Decomposition (SVD) and Principal Component Analysis (PCA), to pinpoint pertinent genes within microarray datasets. Leveraging deep learning principles, we harnessed a Convolutional Neural Network (CNN) as our classifier for Alzheimer’s disease (AD) prediction. Our approach involved the utilization of a seven-layer CNN with diverse configurations to process the dataset. Empirical outcomes on the AD dataset underscored the effectiveness of the PCA–CNN model, yielding an accuracy of 96.60% and a loss of 0.3503. Likewise, the SVD–CNN model showcased remarkable accuracy, attaining 97.08% and a loss of 0.2466. These results accentuate the potential of our method for gene dimension reduction and classification accuracy enhancement by selecting a subset of pertinent genes. Integrating gene selection methodologies with deep learning architectures presents a promising framework for elevating AD prediction and promoting precision medicine in neurodegenerative disorders. Ongoing research endeavors aim to generalize this approach for diverse applications, explore alternative gene selection techniques, and investigate a variety of deep learning architectures.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3