Integrating gene selection and deep learning for enhanced Autisms' disease prediction: a comparative study using microarray data

Author:

Abdelwahab Mahmoud M.12,Al-Karawi Khamis A.34,Semary H. E.15

Affiliation:

1. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University, Saudi Arabia

2. Department of Basic Sciences Higher Institute of Administrative Sciences, Osim, Egypt

3. School of Science, Engineering, and Environment, Salford University, Great Manchester, UK

4. Diyala University, Baqubah, Diyala, Iraq

5. Department of Statistics and Insurance, Faculty of Commerce, Zagazig University, Egypt

Abstract

<abstract> <p>In this article, Autism Spectrum Disorder (ASD) is discussed, with an emphasis placed on the multidimensional nature of the disorder, which is anchored in genetic and neurological components. Identifying genes related to ASD is essential to comprehend the mechanisms that underlie the illness, yet the condition's complexity has impeded precise information in this field. In ASD research, the analysis of gene expression data helps choose and categorize significant genes. The study used microarray data to provide a novel approach that integrated gene selection techniques with deep learning models to improve the accuracy of ASD prediction. It offered a detailed comparative examination of gene selection approaches and deep learning architectures, including singular value decompositions (SVD), principal component analyses (PCA), and convolutional neural networks (CNNs). This paper combines gene selection methods (PCA and SVD) with deep learning models (CNN) to improve ASD prediction. Compared to more traditional approaches, the study revealed that its integrated methodology was more effective in improving the accuracy of ASD prediction results through experimentation. There was a difference in the accuracy between the PCA-CNN model, which achieved 94.33% with a loss of 0.4312, and the SVD-CNN model, which achieved 92.21% with a loss less than or equal to 0.3354. These discoveries help in the development of more accurate diagnostic and prognostic tools for ASD, which is a complicated neurodevelopmental disorder. Additionally, they provide insights into the molecular pathways that underlie ASD.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decoding the genetic landscape of autism: A comprehensive review;World Journal of Clinical Pediatrics;2024-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3