Streptozotocin-Induced Diabetes in a Mouse Model (BALB/c) Is Not an Effective Model for Research on Transplantation Procedures in the Treatment of Type 1 Diabetes

Author:

Wszola Michal,Klak MartaORCID,Kosowska Anna,Tymicki Grzegorz,Berman Andrzej,Adamiok-Ostrowska AnnaORCID,Olkowska-Truchanowicz JoannaORCID,Uhrynowska-Tyszkiewicz IzabelaORCID,Kaminski Artur

Abstract

Type 1 diabetes (T1D) is characterized by the destruction of over 90% of the β-cells. C-peptide is a parameter for evaluating T1D. Streptozotocin (STZ) is a standard method of inducing diabetes in animals. Eight protocols describe the administration of STZ in mice; C-peptide levels are not taken into account. The aim of the study is to determine whether the STZ protocol for the induction of beta-cell mass destruction allows for the development of a stable in vivo mouse model for research into new transplant procedures in the treatment of type 1 diabetes. Materials and methods: Forty BALB/c mice were used. The animals were divided into nine groups according to the STZ dose and a control group. The STZ doses were between 140 and 400 mg/kg of body weight. C-peptide was taken before and 2, 7, 9, 12, 14, and 21 days after STZ. Immunohistochemistry was performed. The area of the islet and insulin-/glucagon-expressing tissues was calculated. Results: Mice who received 140, 160, 2 × 100, 200, and 250 mg of STZ did not show changes in mean fasting C-peptide in comparison to the control group and to day 0. All animals with doses of 300 and 400 mg of STZ died during the experiment. The area of the islets did not show any differences between the control and STZ-treated mice in groups below 300 mg. The reduction of insulin-positive areas in STZ mice did not exceed 50%. Conclusions: Streptozotocin is not an appropriate method of inducing a diabetes model for further research on transplantation treatments of type 1 diabetes, having caused the destruction of more than 90% of the β-cell mass in BALB/c mice.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3