Dose-dependent progression of multiple low dose streptozotocin-induced diabetes in mice

Author:

Bauer Brandon M.ORCID,Bhattacharya Supriyo,Bloom-Saldana Elizabeth,Irimia Jose M.,Fueger Patrick T.ORCID

Abstract

AbstractThis study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and while both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, while pathways that were upregulated in both doses were more upregulated in the 35 mg/kg treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

1. Site-specific DNA methylation and apoptosis: induction by diabetogenic streptozotocin

2. Elucidation of Molecular Mechanisms of Streptozotocin-Induced Oxidative Stress, Apoptosis, and Mitochondrial Dysfunction in Rin-5F Pancreatic β-Cells;Oxidative Medicine and Cellular Longevity,2017

3. The mechanisms of alloxan- and streptozotocin-induced diabetes

4. Streptozotocin-Induced Diabetic Models in Mice and Rats;Current Protocols,2021

5. Animal models of obesity and diabetes mellitus;Nature reviews Endocrinology,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3